Two-point concentration in random geometric graphs

نویسنده

  • Tobias Müller
چکیده

A random geometric graph Gn is constructed by taking vertices X1, . . . , Xn ∈ R at random (i.i.d. according to some probability distribution ν with a bounded density function) and including an edge between Xi and Xj if ‖Xi−Xj‖ < r where r = r(n) > 0. We prove a conjecture of Penrose ([14]) stating that when r = r(n) is chosen such that nr = o(lnn) then the probability distribution of the clique number ω(Gn) becomes concentrated on two consecutive integers and we show that the same holds for a number of other graph parameters including the chromatic number χ(Gn).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Correlations in Random Geometric Graphs

Spatially embedded networks are important in several disciplines. The prototypical spatial network we assume is the Random Geometric Graph, of which many properties are known. Here we present new results for the two-point degree correlation function in terms of the clustering coefficient of the graphs for two-dimensional space in particular, with extensions to arbitrary finite dimensions.

متن کامل

Balanced Cut Approximation in Random Geometric Graphs

A random geometric graph G(n, r) is obtained by spreading n points uniformly at random in a unit square, and by associating a vertex to each point and an edge to each pair of points at Euclidian distance at most r. Such graphs are extensively used to model wireless ad-hoc networks, and in particular sensor networks. It is well known that, over a critical value of r, the graph is connected with ...

متن کامل

Random Geometric Complexes

We study the expected topological properties of Čech and Vietoris-Rips complexes built on randomly sampled points in R. These are, in some cases, analogues of known results for connectivity and component counts for random geometric graphs. However, an important difference in this setting is that homology is not monotone in the underlying parameter. In the sparse range, we compute the expectatio...

متن کامل

First-passage percolation on random geometric graphs and an application to shortest-path trees

We consider Euclidean first-passage percolation on a large family of connected random geometric graphs in the d-dimensional Euclidean space encompassing various well-known models from stochastic geometry. In particular, we establish a strong linear growth property for shortest-path lengths on random geometric graphs which are generated by point processes. We consider the event that the growth o...

متن کامل

The distant-2 chromatic number of random proximity and random geometric graphs

We are interested in finding bounds for the distant-2 chromatic number of geometric graphs drawn from different models. We consider two undirected models of random graphs: random geometric graphs and random proximity graphs for which sharp connectivity thresholds have been shown. We are interested in a.a.s. connected graphs close just above the connectivity threshold. For such subfamilies of ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2008